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Abstract

This note provides an application of the “window”-based spectral AMG
method (cf. [FVZ05] or [Va08]) for proving energy error estimates desired in pro-
viding coarse (upscaled) discretization of fairly general classes of PDEs. Compu-
tationally more efficient versions of the original window-based spectral AMG, as
well as a new method utilizing local element matrices, are outlined summarizing
the results from a forthcoming report.

1 The strong approximation property

We are given a s.p.d. n × n sparse matrix A and let P : Rnc 7→ Rn, nc < n, be a
given (rectangular) interpolation matrix.
We are interested in the following strong approximation property:
For any fine-grid vector u ∈ Rn there is a coarse interpolant Puc such that

‖A‖‖u − Puc‖2
A ≤ CA ‖Au‖2. (1.1)

If the problem of our main interest

Au = f ,

comes from a finite element discretization of a PDE on a domain Ω ⊂ Rd (d = 2 or
3), then f = (fi) comes from a given r.h.s. function f(x) ∈ L2(Ω), where the entries
fi are computed as the following integral moments

fi = (f, ϕi) ≡
∫

Ω

f(x)ϕi dx.

Above, ϕi runs over a basis of the fine–grid finite element space Vh associated with a
triangulation of Ω with characteristic fine-grid mesh size h. For a nodal (Lagrangian)
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basis, the index “i” runs over the set of fine degrees of freedom xi ∈ Nh. The unknown
u stands for the coefficient vector of the finite element, Galerkin, approximation uh

to the solution of the underlined PDE posed variationally, i.e., uh ∈ Vh solves the
discretized PDE in a variational form associated with a given bilinear form a(., .),
stated as follows

a(uh, ϕ) = (f, ϕ) for all ϕ ∈ Vh.

As an example, we consider a second order self–adjoint elliptic bilinear form a(u, ϕ) =∫
Ω

k(x) ∇u · ∇ϕ dx for u, ϕ ∈ H1
0 (Ω) and a given positive coefficient function k =

k(x), x ∈ Ω, the given polygonal/polyhedral domain in Rd, d = 2 or 3. Using
a standard piecewise linear conforming finite element space Vh on a quasiuniform
triangulation Th, as it is well-known, the stiffness matrix A = (a(ϕj , ϕi)) computed
from a nodal Lagrangian basis {ϕi}xi∈Nh

of Vh satisfies

‖A‖ ≃ hd−2. (1.2)

The equivalence constants above generally depend on the variation
max
x∈Ω

k(x)

min
x∈Ω

k(x) but are

mesh-independent.
Assume, that we have come up with a coarse space VH ⊂ Vh such that the coefficient
vectors of functions in VH viewed as elements of Vh can be represented as the range
of an interpolation mapping P . We can define respective coarse basis functions by
forming Peic

for each coarse coordinate vector eic
∈ Rnc that has a single nonzero

entry at the icth position. Then, consider the fine–grid function φ
(H)
ic

that has coef-

ficient vector the icth column of P , i.e., equal to Peic
. The set of functions {φ(H)

ic
}

forms the coarse basis of interest. The parameter H stands for characteristic size of
the support of the coarse basis functions.
The above matrix–vector strong approximation property (1.1) admits the following
finite element function form:

‖A‖ a(uh − uH , uh − uH) ≤ CA

∑

xi∈Nh

f2
i = CA

∑

xi∈Nh




∫

Ω

f(x)ϕi dx




2

.

Using Cauchy-Schwarz inequality, we have

∑

xi∈Nh




∫

Ω

f(x)ϕi dx




2

≤
∑

xi∈Nh

∫

support (ϕi)

f2(x) dx

∫

Ω

ϕ2
i dx.

For a fairly general class of basis functions (including piecewise linears) on a quasiu-
niform mesh, we have ∫

Ω

ϕ2
i dx ≃ |support (ϕi)| ≃ hd.
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Due to the bounded overlap of the supports of the finite element basis functions, we
also have ∑

xi∈Nh

∫

support (ϕi)

f2(x) dx ≤ κ ‖f‖2
0.

Thus, we arrive at the energy error estimate of our main interest (using (1.2))

a(uh − uH , uh − uH) ≤ CAκ
hd

‖A‖‖f‖
2
0 ≃ CAκ h2 ‖f‖2

0.

In practice, we typically have CA = O(
(

H
h

)2
) with a constant in the O symbol,

independent of the two mesh sizes (h and H); see, e.g., Corollary 3.1 later on. Thus,
we get the following final upscaling energy error estimate:

a(uh − uH , uh − uH) ≤ cA H2‖f‖2
0. (1.3)

In the remaining sections, we summarize a few AMG methods that provide strong
approximation property.

2 Efficient window-based spectral AMG methods

In [FVZ05] (see also [Va08]), the following AMG method was proposed that exhibits
strong approximation property. The original version tends to lead to relatively large
coarse spaces so that the resulting two (and multi)–level methods have unaccept-
ably high complexities. In the present section, we propose several approaches in the
attempt to reduce the complexity of the original method.
Given an overlapping partition {w} of the set of indices i = 1, 2, . . . , n, we extract
the rows of a given n × n matrix A with indices from any given set (called window)
w. The respective rectangular matrix is denoted by Aw. By proper reordering, Aw

can be written as follows
Aw = [Aww, Aw, χ] .

Here, Aww is the principal submatrix of A (row and column indices from w) and Aw,χ

is the submatrix of A with columns outside w (and row indices from w).
We are interested, for a proper nonnegative diagonal matrix Dw, in the normal ma-
trices AT

wDwAw. The diagonal matrices Dw provide a partition of unity, i.e., if Iw

stands for extension by zero outside the set w, then
∑
w

IwDwIT
w = I. This property

ensures that
∑

w

vT AT
wDwAwv =

∑

w

vT AT IwDwIT
wAv = ‖Av‖2, Aw = IT

wA. (2.1)

The method in question uses the symmetric semi-definite Schur complements Sw

defined as follows:

vT
wSwvw = inf

vχ

[
vw

vχ

]T

AT
wDwAw

[
vw

vχ

]
. (2.2)
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The original method utilizes the eigenvectors of the semidefinite Schur complements
Sw,

Swpk = λk pk, k = 1, . . . , nw. (2.3)

For efficiency reason, for a given tentative interpolation matrix P̃ , we use in (2.3)
instead the modified Schur complements

vT
wSwvw = inf

vχ∈IT
χ Range( eP )

[
vw

vχ

]T

AT
wDwAw

[
vw

vχ

]
. (2.4)

In what follows, we denote the exact window Schur complement with S∗
w.

We first form local interpolation matrices Pw by putting together the first nc
w ≥ 1

eigenvectors (in the lower part of the spectrum of Sw), i.e.,

Pw =
[
p1, . . . , pnc

w

]
. (2.5)

The corresponding eigenvalues (ordered in an increasing order) are such that λk ≤
tol λmax(Sw) for k ≤ nc

w and

λk(Sw) > tol ‖Sw‖ = tol λmax(Sw) for k > nc
w. (2.6)

Here, we have the freedom to choose the pre-selected tolerance “tol” (a number be-
tween zero and one) that may also vary with w.
The eigenvectors {pk}nw

k=1 are orthogonal and assumed normalized.
The global P is computed based on another partition of unity set of nonnegative
nw × nw diagonal matrices {Qw} that satisfy

I =
∑

w

IwQwIT
w .

Then P is defined as follows

P =
∑

w

IwQw [0, Pw, 0] =
∑

w

IwQwPw(Ic
w)T . (2.7)

Here, Ic
w maps the local indices of the eigenvectors coming from the window w to

their global indices expanding the result with zeros elsewhere. Thus we have defined
a process that from a tentative P̃ produces another one P . This can be iterated
several times (by possibly changing the parameters such as {w} and tol). In the next
theorem, we formulate conditions ensuring that P admits a strong approximation
property.

Theorem 2.1 Consider the iterated window spectral AMG interpolation matrix P

constructed on the basis of the modified window Schur complements using a P̃ that
satisfies the following estimate

∑

w

‖D
1
2
wAw, χ(vχ − IT

χ P̃wc)‖2 ≤ µ ‖Av‖2. (2.8)
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That is, P̃ is such that for any v, when restricted to a complementary set χ, there is
a coarse vector wc (depending on v and the set χ) such that for a fixed number µ > 0
(2.8) holds. Then, if we choose tol = 1

δ
≤ 1 in the two-level spectral decomposition

defining the local Pw so that (see (2.6))

‖Sw‖ ≤ δ λmw+1(Sw),

and if we also assume the quasiuniformity of the windows, i.e., the estimate

β ‖A‖2 ≤ ‖S∗
w‖, (2.9)

then, the following main strong approximation property holds for P

‖A‖2‖v − Pvc‖2 ≤ η ‖Av‖2. (2.10)

Here, η = δ
β

(1 +
√

µ)2, where µ is from (2.8).

3 A new “window”-based spectral AMG method

for finite element matrices

Here, we present a modified version of the method applied to finite element matrices
A. The difference is in the eigenproblems that we use. Also, it utilizes a special
partition of unity matrices. A main additional assumption is that the window sets
are covered exactly by fine–grid elements and that we have access to the respective
fine–grid element matrices so that we can assemble the semi–definite local matrices
further denoted by Λw. Therefore, we have the identity A =

∑
w

IwΛwIT
w .

We solve eigenproblems associated with the pair of matrices Λw and Sw, where Sw is
the exact window-based Schur complement (as introduced before). The eigenproblems
read (compare with (2.3)):

Swpk = λk Λw pk, k = 1, . . . , nw, (3.1)

where the eigenvalues are numbered in an increasing order and the eigenvectors are
Λw–normalized.
Since, the matrices Λw can also be only semi–definite, to have real eigenvalues the
nullspace of Λw should be contained in the nullspace of Sw, which is the case for finite
elliptic matrices (Laplacian–like as well as elasticity).
It is clear that we can choose the eigenvectors pk be orthogonal to the nullspace of

Λw (and Λw–orthogonal to each other). Let the columns of P
(0)
w span the nullspace

of Λw. Then, we have pT
k P

(0)
w = 0.

Based on a preselected tolerance tol ∈ [0, 1), we choose nc
w such that λk > tol λnw

for
k > nc

w. The local interpolation matrices are defined similarly as before (cf., (2.5)),
now augmented with the nullspace, i.e.,

Pw =
[
P (0)

w , p1, . . . , pnc
w

]
. (3.2)
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To define the global one, we use special diagonal matrices {Qw}w with nonnegative
entries that provide partition of unity, i.e., we have

I =
∑

w

IwQwIT
w .

Each Qw has entries on its diagonal qw, i, i ∈ w, defined as follows:

qw, i =
‖Λw‖∑

w
′ : i∈w

′

‖Λw
′ ‖ . (3.3)

At the end we formulate our main result.

Theorem 3.1 Let A be a given finite element s.p.d. matrix. Consider a given set of
windows {w} where each window w is exactly covered by fine–grid elements. Assume
also that the local finite element matrices Λw corresponding to the sets w are available.
The nullspace (if nonempty) of the local matrices Λw is assumed known (explicitly
computed). That is, let the nullspace of Λw be represented by the range of an explicitly

available local matrix P
(0)
w . Assume that this nullspace is contained in the nullspace of

the window Schur complement Sw (defined in (2.2)). The global interpolation matrix
P is defined as in (2.7) based on the local interpolation matrices (3.2) and the weights
qw, i (entries of the diagonal partition of unity matrices Qw) are defined in (3.3).
Then, the following global strong approximation property holds

‖v − Pvc‖2
A ≤ κ max

w
Cond+(Λw) max

w

(
1

tol λmax(Λ
+
wSw)

)
‖Av‖2.

Above, κ ≥ 1 depends on the overlap of {w}, tol ∈ (0, 1] (in general depending on
w) is the tolerance used to define the portion of the eigenvectors pk in the lower part

of the spectrum computed in (3.1) used to define Pw, Cond+(Λw) = ‖Λw‖

λ+

min
(Λw)

is the

effective condition number of Λw computed in a subspace orthogonal to the nullspace
of Λw. Finally, λmax(Λ

+
wSw) = maxk λk where λk are from (3.1).

Corollary 3.1 For finite element s.p.d. matrices A coming from second order ellip-
tic problems, the constructed finite element modification of the window-based spectral
AMG method, the following strong approximation property holds

‖v − Pvc‖2
A ≤ C κ

(
H

h

)2

max
w

1

tol ‖Aw0,w0
‖ ‖Av‖2.
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